CS395T: Continuous Algorithms, Part IV
Minimax optimization

Kevin Tian

1 Minimax theorems and monotone operators

This lecture focuses on generalizing the techniques of Part III to the setting of minimax optimiza-
tion, i.e. optimization problems between two competing players x € X and y € ), who respectively
wish to minimize or maximize a shared objective function f : X x ) — R. Typically, this problem
is most interesting when strong duality holds, i.e.

Inf Slelgf(x,y) = sup Inf f(z,y). (1)
As remarked in previous lectures, the left-hand side of (1) is always at least the right-hand side.
One famous theorem (which is arguably the most important result in linear programming) states
that if f(z,y) = y' Az is bilinear and X = R%,, Y = R, are nonnegative orthants, (1) holds.
More generally, minimax theorems are set of tools which can be used to establish strong duality
(1). Before we state a few examples which are useful in practical applications, we begin by defining
the function class which we focus on in this lecture, the subject of most minimax theorems.

Definition 1 (Convex-concave). We say a function f: X x )Y — R is convex-concave if X, Y are
conver, f(-,%) is convex in x € X for any y € Y, and f(z,-) is concave' iny €Y for any T € X.

When f is convex-concave, there exist simple-to-verify conditions which guarantee strong duality.
In bounded settings, these results sometimes follow from fixed-point iteration arguments, and more
generally the convex analysis tools developed in prior lectures are quite useful in these endeavors.
For example, extensions of Brouwer’s fixed-point theorem, which states that continuous functions
f from convex, compact sets X to themselves admit fixed points (i.e. x € X with f(z) = x),
give simple proofs of von Neumann’s minimax theorem [vN28|, by considering the best response
function. For convenience, we now list two of the most commonly applicable minimax theorems.?

1. Sion’s minimax theorem [Sio58], which extends von Neumann’s minimax theorem [vN28],
states (1) holds if either X or Y is compact and f is convex-concave and continuous in both
variables. This continues to hold under weaker assumptions, e.g. quasi-convexity-concavity.>

2. A result shown in e.g. [ET99] is that if f is convex-concave and continuous in both variables,
but neither X’ or Y is compact, as long as f(x,y) — —oo for any fixed y € Y as x € X
diverges, and f(Z,y) — oo for any fixed T € X as y € ) diverges, (1) holds.

When it exists, we refer to a point (z*,y*) € X x Y such that f(z*,y*) realizes the value in (1),
and x* = argmin,cy f(z,9"), y* = argmax,cr f(z*,y), (i.e. these points are each others’ best
responses) as a saddle point of f. More generally we define the duality gap of (x,y) € X x Y by

Gap(z,y) := sup f(z,y') — inf f(2',y).
y'ey zEX

Intuitively, Gap(x,y) measures how different objectives in a minimax game can be if a player in )

is allowed to respond to x, compared to if a player in X can respond to y. Clearly, any saddle point

(z*,y*) € X x Y has Gap(z*, y*) = 0, since y* = argmax, ¢y, f(z*,y) and 2* = argmin, ¢ » f(z, y*).

The main observation underlying this lecture is that the mirror descent framework from Part ITI

I'We say a function f is concave if its negation —f is convex.

2To gain some intuition for the conditions listed in the minimax theorems below, a useful counterexample to
keep in mind is the simple function f(z,y) =z + y for z,y € R, for which (1) clearly does not hold.

3Quasiconvexity states sublevel sets of a function are convex, and quasiconcavity is quasiconvexity of the negation.



generalizes readily to a broad family of linear operators. In particular, the following generalizes
Theorem 2 and Corollary 4 of Part III, in light of Remark 4 of Part III.

Proposition 1. Let Z C RY be conver,* let ¢ : Z — R be 1-strongly convez in ||-|| and of Legendre
type, and let g : Z — R® satisfy ||g(2)||, < L for all z € Z. Consider iterating the update

ser1  avgmin ez {(ng(0), 2) + Dy(zllz0)}, for0 <t <T, (2)

from zo € Z with n > 0. Then for any z* € Z with D,(2*||z) < O,

1 D,(2*||20) nL* _+V2OL V20
= o — 2y < TR 2 < 1= 3
T 2 <g(zt) 2t z > = nT 9 = \/T fOT n L\/T ( )

Moreover, if § : Z — R satisfies E§(z) = g(2) and E ||§(2)||> < L2 for all z € Z, iterating the
update (2) with g in place of g yields, for any z* € Z with Dy(2*||20) < O,

1 D, (2*||20)  nL* _V2OL V20
El: > ca— 2y < = - . 4
T o <g(zt) 2t z > = 77T 9 = \/T fOT’ n L\/T ( )

Proposition 1 becomes a useful tool when studying minimax optimization when we make the
realization that there is a natural operator g in this setting, for which we can relate the left-hand
side of (3) to the duality gap of a pair of points on a product space.

Lemma 1. Let f : X x Y — R be convex-concave and differentiable.® Define the operator

9(z,y) = (Vaf(z,y), =Vyf(x,y)) for all (z,y) € X x Y. (5)
Then for any T € N and {z; := (2, Y1) bo<i<r C X X Y, letting (T, ) := % ZOSKT 2,

Gap(,9) < swp = 3 (g(zn) 2 — 7).

wexxy L' (o=
Proof. We begin with the observation that for all z = (z,y),2’ = (2/,y") € X x Y,

<g(z),z - Z/> = <V,f(x,y),;l: - 1‘/> - <Vyf(x,y),y - y/>
> (f(x,y) = f@',9) = (f(z,9) = f(z,9) = f(z,9) — f(2,p).

The inequality used convexity of f(-,y) and concavity of f(z,-) (Lemma 1, Part I). Finally, for
x* = argmin, ¢ y f (7, 7), y* 1= argmax, cy, f(Z,y), 2* 1= (z*,y*), convexity-concavity and (6) show

(6)

Gap(@. ) = f@y") ~ [ 0) S 7 3 fny) =S S 5 Y (ol — ).

0<t<T 0<t<T

O

In other words, under suitable regularity assumptions we can directly apply Proposition 1 to
algorithmically establish duality gap bounds for minimax optimization. One subtlety is that in
convex optimization settings, we choose z* in Proposition 1 to be the minimizer of a function,
which is independent of any algorithm. On the other hand, Lemma 1 chooses the point z* in
response to the iterates of an algorithm, so typically we require bounds of the form

© > sup D, (2%||20),
zZ*€Z

4Throughout this lecture we use z to denote variables in a set Z of interest, because Z will often be a product
space X X ) in minimax optimization settings, so we reserve x,y to refer to blocks of z.

5For simplicity, we assume all functions in this lecture are differentiable, though the techniques we develop extend
to more general settings e.g. through the subgradient machinery of Part I. We also ignore boundary issues as in all
settings we discuss, operators have finite Lipschitz constants and thus are stable to infinitesimal perturbations.



i.e. uniform upper bounds on the Bregman divergence. By choosing zy as the minimizer of ¢,
we can apply Remark 6, Part III to obtain such bounds. This subtlety causes further issues in
stochastic settings, where (4) is false once z* is no longer independent of the realization g, because

E(9(2), 2 — 2") # (9(2),2 — 27) (7)
since linearity of expectation fails. We give tools to circumvent this issue in Sections 2 and 3.

Finally, we note that much of minimax optimization theory can be further generalized to the setting
of solving variational inequalities (VIs) in operators satisfying the following property.

Definition 2 (Monotone operator). We say operator g : Z — R? is monotone if
(g(2) —g(z'),z—2") >0 forall z,2' € Z.
We say g is m-strongly monotone with respect to h : Z — R, or m-strongly monotone in h, if

(9(z) —g('),2 = 2") >m(h(z) — h(z'),z = 2') forall z,2' € Z. (8)

Clearly, if h is also monotone then strong monotonicity implies standard monotonicity. We say
that z* € Z is a solution® to a variational inequality in an operator g : Z — R? if

(9(2%),2" —z) <Oforall z € Z. (9)

We have previously shown that when g is the gradient of a differentiable convex function f, it is
monotone (Eq. (2), Part III), and further first-order optimality (Lemma 2, Part I) shows z* solves
the VI in g iff it minimizes f. We state a similar result in the convex-concave setting.

Lemma 2. Let f : X x Y be convezr-concave and differentiable, and let g be defined as in (5).
Then g is monotone, and z* solves the VI in g iff Gap(z*) = 0.

Proof. For the first claim, we add the following inequalities, derived in the same way as (6):

<g(Z),Z - Z’) Z f(xay/) - f(mlvy)a
(9(2'),2" = 2) > f(a',y) = f(,y), where z = (z,y), 2’ = (a',y").

Finally, if z* solves the VI in g, Lemma 1 with T = 1 shows Gap(z*) < 0. By definition Gap(z*) is
nonnegative (since we can always choose the blocks of a point as responses), so Gap(z*) =0. O

We conclude by noting that strong monotonicity is related to our earlier notion of strong convexity.

Lemma 3. If g =V f and h = Vo for differentiable, convex f: Z - R and ¢ : Z — R, and f is
p-relatively strongly convex in ¢ (Definition 2, Part II), then g is u-strongly monotone in h.

Proof. Relative strong convexity implies f — py is convex, so V f — uV is a monotone operator.
The conclusion follows since (8) is implied by monotonicity of Vf — uV¢ upon rearranging. [

2 Matrix games

One of the most canonical examples of a structured minimax optimization problem is the setting
of bilinear minimax optimization, where the function of interest is bilinear, i.e. f(z,y) =y ' Az —
by + c"x for some A € R™*" b c R™, ¢c € R". Here, for ¥ CR™, Y C R™, we wish to solve

- T T T
min ma; Az —b c . 10
rzeEX yE))}(y y + ( )

In light of Lemma 1, the natural monotone operator associated with (10) is
g(z,y) = (ATy +c¢, —Az+D). (11)

The following property of (11) is the result of a straightforward expansion.

6Sometimes in the literature, this definition is called a strong solution to the variational inequality.



Fact 1. Defining g as in (11) over Z:=X x Y, (g(z) — g(z'),z — 2') =0 for any 2,2’ € Z, and
1 1
T Z 9(z1) = g(2) for {zi}o<icr C Z, Z:= T Z 2.

0<t<T 0<t<T

For example, when X is a Euclidean ball and Y is an (¢;-constrained) probability simplex, (10)
generalizes hard-margin support vector machines (SVMs) by taking rows of A to be labeled ex-
amples signed by their label [CHW12]. Moreover, when X and Y are both Euclidean balls, (10)
generalizes constrained linear regression by considering the dual formulation, which shows

2
min [|Az — b||§ = < min max y' Az — bTy) .
z€B(0,,1) 2€B(0,,1) yeB(0,,,1)
To illustrate some techniques suited for stochastic minimax optimization, we focus on the specific
setting where X = A™ and Y = A" are both probability simplices, and b = 0,,,, ¢ = 0,,. The
corresponding minimax optimization problem is called a matriz game, and has the form

min max y' Az. (12)

TEA™ yeA™
The problem (12) is well-studied in the game theory literature, because it has a natural interpre-
tation as a two-player zero-sum game. Specifically, we can let A;; encode a score for the game
if a minimizing player selects action j € [n] and a maximizing player selects action ¢ € [m]. The
game is called zero-sum because negating A reverses the roles of the players, so the minimizing
player can alternatively maximize their score with respect to a payoff matrix —A, so the sums of
scores in this equivalent “max-max” game is always zero. More generally, we view A™ as specifying
a probability distribution over an action space for the minimizing player identified with [n], and
similarly A™ is a distribution over an action space [m]. A saddle point for (12) is then called
a mized Nash equilibrium for the zero-sum game. A powerful consequence of the von Neumann
minimax theorem [vN28| is that mixed Nash equilbria always exist in zero-sum games.” We will
see an algorithmic proof of this fact, by leveraging Proposition 1 with the following claims.

Lemma 4. Let X CR" and Y CR™, and let |||, : X = R and |||y, : ¥ — R be norms. Then

Il : X x Y = R is a norm, where
2 2
1z, 9l = Nl + Nyl (13)

Moreover, the dual norm to the norm defined in (13) is, for g € R™ and h € R™,

(g, Il = /llgll.. + IRl .- (14)

Proof. To see the first claim, of the three properties of norms (positive definiteness, absolute
homogeneity, and the triangle inequality), only the triangle inequality is not immediately obvious
upon using that £ is a norm on R2. To see the triangle inequality, we have

2 2
2 2 2 2
I+ + )l =l + 27 + g + o113 < \/ (ll% + 11l )+ (w5, + Dl )

2 2 2 2
< el + I3+l 13 + 113 = @)l + 1l ).

The first inequality followed from the triangle inequality on [|-|| y, |||y, and the second followed
from the triangle inequality on £ applied to the points (||z| x, [ylly), (||| 2, [|¥]ly) € R%. To see
the second claim, let ||(x,y)|| < 1 so that ||z||x = a and ||y||y = B for a® + 3% < 1. Then,

2 2
(g, 2) + (hy) < llglly .+ BlAly. < elgly. +V1=a?lhlly. <\/lgll. + 125 .,

where the last inequality follows by expanding and completing the square. Equality is achieved by
choosing x and y in directions realizing the definitions of the dual norms ||g| v .. [|2]y ., and with
lengths induced by a € (0, 1) satisfying v'1 —a?||g||,, = a||h]y, , in the above display. O

"In fact, Nash famously established that mixed Nash equilbria always exist in far more general settings, with an
arbitrary finite number of players with finite (non-identical) action spaces [Nas51].




Lemma 5. Let A € R™*", and let |||, = [|-[|, and |-y, =[], be norms over X C By (1),
ycC BH'Hy(l) respectively, for p,q > 1. Let p*,q* > 1 satisfy %—i—p% =1, %—i-q% = 1. Then defining
|-l and ||-||, as in (14), and letting g(z,y) := (ATy, —Azx), we have

sup_[lg(2)l, < V2|A|

—q*
2EXXY p=a

Proof. Fix some z = (z,y) € X x ), and recall the definition [|A[|,_,

conclusion follows because the ¢, norm in R? is a v/2-approximation to the . norm, and

= max||y| <1 |Az|,. The

T T _
IAT Y < TAT] e = 1Al g I=Ally, < A, -

O

Lemmas 4 and 5 induce the following application of Proposition 1 for solving (12). Let
Z:=A" x A" Ml =1l =1l (15)

=X =)
and define the joint norms ||-||, ||-||, over Z following (13), (14). Moreover, consider the regularizer
p(x,y) = > wjlogz;+ Y yilogy (16)
J€Eln] i€[m]

over Z. By applying Proposition 1, we immediately deduce the following.

Corollary 1. Let A € R™*" have ||A||, . = MaX;c(m] je[n] |Aij| < L, and let € > 0. Following
notation in (15), there is an algorithm computing z := (z,y) € Z satisfying Gap(z) < €, in time

0 <nnZ(A> . ng(m’”) .

€2

Proof. Consider running the algorithm in Proposition 1 for T iterations, starting from zop =
(%Iln, %]lm), and with the operator g(z,y) := (ATy, —Az). We showed (Lemmas 5 and 6, Part

IIT) that by definition of the joint norm ||-||, the regularizer ¢ in (16) is 1-strongly convex in ||-||
and has additive range bounded by log(mn). Moreover, Lemma 5 shows that for all (x,y) € Z,

g, 9)ll. < V2IAllL 0 = V2| Al < V2L
2
Hence, Proposition 1 and Lemma 1 show it suffices to take T' = @(%Q(m")). It is clear from
the entropic updates derived in Section 4, Part III that each iteration can be implemented in time
O(m+n) plus the time it takes to compute g(z,y) for some iterate (x,y). The latter computation
amounts to two matrix-vector multiplications performable in time O(nnz(A)). O

By taking € — 0, Corollary 1 serves as an “algorithmic minimax theorem” in that it proves strong
duality for (12), via an iterative method converging to a point with zero duality gap. Indeed, as
illustrated by the relationship between mirror descent and proximal point methods explored in
Part III (see also discussion in the following Section 3), our algorithmic proof can be viewed as an
approximate fixed-point argument, which is similar to standard approaches in mathematics used
to prove minimax theorems. This technique illustrates the utility of no-regret algorithms (Remark
4, Part III) in establishing existence of equilibria, which is a qualitative guarantee.

One can also ask the question of whether Corollary 1 is improvable in a quantitative sense, i.e.
whether there exist faster algorithms computing z € Z with Gap(z) < e. We will see two such
improved methods in this lecture: one presently and one in Section 3. As in Section 5, Part III,
the first idea for improvement is that we can compute significantly cheaper unbiased estimates of
the operator g(x,%y) := (A Ty, —Ax) enjoying the same boundedness properties. This is desirable
because the runtime per iteration in Corollary 1 was bottlenecked by the nnz(A) = Q(m + n)
runtime cost of computing g(z,y). Consider instead using the estimate

g(z,y) == (A, —A;) for j ~z, i ~y independently, (17)



where x € A" and y € A™ are viewed as distributions over [n], [m] respectively. It is simple to
check that E§g = g everywhere in Z, and given (z,y) € Z, we can compute a sample § in time
O(m + n) using standard techniques.® Moreover, applying Lemma 5 once again shows that

lg(z, )], < V2| A, forall (z,y) € Z, with probability 1.

At this point, it is tempting to apply the second half of Proposition 1 to conclude that we can
compute random 2z € Z with EGap(z) < e, using a faster runtime of O((m + n)log(mn) - (Le~1)?),
by speeding up iterations with the cheaper (17). This actually is true, but requires a bit more work.
The second half of Proposition 1 (with Lemma 1) only shows that for any fized z* = (z*,y*) € Z,

Elf(@y") - fa"y)l<e =  swp  E[f(z,y") - f@",p)] <e
z*=(z*,y*)EZ

However, the definition of EGap requires the sup to be inside the expectation, and in general for
scalar random variables, we can have sup E < E sup with an arbitrarily large strict inequality.® The
culprit here is that the best response z* in the definition of Gap is dependent on the randomness
used by the algorithm, which breaks independence, as discussed in (7).

We present a technique for getting around this issue, which to our knowledge first appeared in
[NJLSO09]. First, we show that centered second moments are boundable via uncentered variants.

Lemma 6. Let x € R be a random variable and let ||-|| be a norm on RY. Then
E Jlz — Ea? < 4E ]2

Proof. The composition of a convex function with a monotone function is convex, so ||-||* is convex.
Thus, |la + b||* < 2]al|> + ||b]|* shows the desired E ||z — Ex||* < 2E ||z|* 4+ 2 ||Ez|* < 4E||z|>. O

Corollary 2 (Ghost iterates). In the setting of Proposition 1, suppose sup,cz Dy (2||20) < © for
20 € Z. Then iterating the update (2) from zg with § in place of g yields

1 2v50L 2vO
E =Y Lz — 2| < « X2
] v A VG

0<t<T

Proof. Define v := g(z¢) — g(2¢), for all 0 <t < T to be the difference between the true operator
g and the estimate g, conditioned on z;. Moreover, define a sequence {w; }o<¢<7 by wo < 2o, and

Wiy < argming, ¢ z {(nve, w) + Dy (w||wy)}, forall 0 <t < T
The proof of Theorem 2 or Corollary 4, Part III shows that for all 0 < ¢ < T, letting §; := g§(z¢),
0 11gell:
2 k)

2
772 Vel
—

(nge, 20 = 27) < Dp(27[|21) = Dop (27| 2241) +
(vt wy — 27) < Dy (2" [we) = Do (2" lwia) +

By adding the above bounds and rearranging, we hence have for all z* € Z,

21015 112
972~ 2%) < D120 = D) + T
(18)
* * n? ||Ut||z
+ D”(Z Hwt) o D#’(Z ||wt+1) + T + <77'Ut7 2t — ’U)t> .

8To sample j € [n] according to x, we can place the coordinates of x at the leaves of a balanced binary tree
augmented with subtree sums, and descend from the root flipping appropriately-biased coins until we reach a leaf.

9For example, suppose one person in the world is randomly choosen to receive a $10° prize. Then supE of the
prize money received is < $1, where the sup is taken over people, but E sup of the prize money received is $109.



The key observation is that the left-hand side is now deterministic conditioned on z;, and the
right-hand side telescopes to the sum of a term which is uniformly bounded for all z*, and a term
which is independent of z*. In particular, summing for 0 <t < T and taking expectations yields

< De(#lz0) + Dy(2|lwo) | 5L

1
E|sup — Z (9(2t), 2 — 2%) T 9

ZEZ S e
20 5nL?  2v/50L
T 2 VT

where the first line took expectations over (18) using Lemma 6 and that Ev; = 04 conditioned on
zt, wy, and the second line used zy = wg with our assumption on O, and our choice of 7. O

The term “ghost iterates” was coined by [CJST19], to refer to the phenomenon that the sequence
{wi}o<i<r only appears in the proof of Corollary 2, and does not affect the implementation of
the algorithm. By applying Corollary 2 with the estimator in (17) in place of the deterministic
operator in Corollary 1, the runtime in Corollary 1 is indeed improvable to the claimed

O((m+n)~Lzb€gQ(mn)),

(19)
if we instead settle for a point z € Z with EGap(z) < e, as first observed by [GK95].1° This can
result in significant savings when A is moderately dense, e.g. when nnz(A) = Q(n?) and m = n,
using the estimator (17) yields quadratically faster iterations. We note that by using concentration
tools developed in the next lecture, it is straightforward to extend this result to hold with high
probability, at a mild cost in the runtime (see e.g. Proposition 1, [BGJ*23] for an example).

Remark 1. There are various generalizations of the techniques in this section, beyond the setting
of (12), explored in depth in e.g. [CHWI12, PB16, CJST19, CJST20]. For example, stochastic
mirror descent readily handles composite terms [DSST10] (analogously to Section 5.2, Part II),
and this yields extensions to nonzero linear terms b, ¢ in (10) with worse Lipschitz constants than
the bilinear portion A. Moreover, in £,-£, geometries for p,q € (1,2) the natural extension of the
sampling strategy (17) does not yield uniform bounds, which requires the analysis of the bias induced
by clipping the gradient operator (see e.g. Section 4.2.2, [CJST19]). Finally, faster stochastic
algorithms can be achieved under further structural assumptions. For example, [PB16, CJST19]
extended the variance reduction techniques of Section 6, Part III to the minimax setting, and
[CJST20] proposed the use of coordinate sampling (as opposed to the row-column sampling in
(17)) to achieve more fine-grained runtime guarantees depending on sparsity properties of A.

3 Mirror prox

We now show that the mirror descent framework of Proposition 1 can be improved when g satisfies
additional stability assumptions, which are relatively mild in many cases. This improvement is
analogous to that attained by smooth gradient descent over Lipschitz gradient descent (see Theo-
rems 2 and 3, Part IT). Because of the flexibility of mirror descent (i.e. its ability to handle arbitrary
operators and non-Euclidean geometries), the improved mirror prox framework of this section can
be used to straightforwardly design optimal algorithms in settings which are traditionally con-
sidered quite challenging. We give one example in Section 4, where we give a simple accelerated
method for smooth convex optimization matching the lower bound of Theorem 5, Part II.!!

Recall that Proposition 1 is parameterized by an operator g and a regularizer ¢, with compatible
regularity properties governed by a norm ||-||. The mirror prox algorithm of this section requires a
similar compatibility assumption, but which can be stated without explicitly defining any norm.

10Glightly different arguments were used in [GK95], which involved verifying (using a specialized certificate)
whether the duality gap is bounded to ensure termination. We choose to present the ghost iterate argument because
of its generality, and to handle settings where checking the duality gap is computationally expensive.

11 As another example, [Shel7] showed how to use these improved methods to design an accelerated algorithm for
smooth optimization in the fc geometry (see Section 5, [CST21] for an alternative exposition). This is particularly
surprising, because (as discussed in Section 5.1, Part II) there are known lower bounds on the additive range of
strongly convex functions in the £~ norm, which is typically a crucial ingredient for acceleration.



Definition 3 (Relative Lipschitzness). Let Z C R%, let g : Z — R? be an operator, and let
p: Z = R be a convex, differentiable function. We say g is A-relatively Lipschitz with respect to
p, or A-relatively Lipschitz in @, if for any z,w,u € Z, we have

(g(w) = 9(2),w —u) <A (Dy(wl[2) + Dy (uf|w)) . (20)

The condition (20) is somewhat opaque, as it requires three points to define. To build intuition, we
first show several basic settings we have already studied, where (20) is straightforward to establish.

Lemma 7. In the setting of Definition 3, suppose g is L-Lipschitz in ||-||, i.e.*
l9(z) = g(Z)l, < Lllz = 2|| forall 2,2 € Z,

and @ is p-strongly convez in ||-||. Then, g is ﬁ—relatively Lipschitz with respect to .

Proof. We have

IN

(g(w) = 9(2), w = u) < llgw) = g, Jw = ull < Lllw = 2| |~ u]
2 (e — 212 + flw = )?) < §<D@<wnz> + Dy (u]w)).

IN

The first inequality was Cauchy-Schwarz (Lemma 12, Part IT), and the second was Lipschitzness of
g. The third inequality was Young’s, and the last used strong convexity of ¢ (Fact 5, Part IIT). O

To give an example of when Lemma 7 is useful, note that it generalizes the setting of smooth
convex optimization (Section 5, Part IT). In particular, if f is L-smooth and ¢ is strongly convex
(both in ||-]]), then g = V f is relatively Lipschitz in ¢ by Lemma 7 and hence mirror prox applies.
We remark that mirror prox is typically analyzed under the assumptions in Lemma 7 (as was done
in [Nem04], where it was introduced), but (20) is a weaker condition which also suffices (see the
proof of Theorem 1). This weakening becomes important in certain applications, as was observed
in [Shel7, CST21], one of which appears in Section 4.

We next give an additional important example of a relatively Lipschitz operator.
Lemma 8. In the setting of Definition 3, suppose f : Z — R is L-relatively smooth in ¢ (i.e.
Ly — f is convex, see Definition 2, Part II). Then ¥V f is L-relatively Lipschitz with respect to .

Proof. The claim follows from relative smoothness and nonnegativity of the Bregman divergence:
L(Dy(wl|z) + Dy(ul|w)) = Dy(wl|z) + Dy (uljw)
= f(w) = f(2) = (V[f(z),w = 2) + f(u) = f(w) = (Vf(w),u —w)
= Dy(ullz) + (Vf(w) = Vf(2),w —u) = (Vf(w) = Vf(2),w —u).
O

One interesting consequence of Lemma 8 is the following basic fact.
Corollary 3. Let f: Z — R be convexr and differentiable. Then V f is 1-relatively Lipschitz in f.

Lemmas 7 and 8 convey the idea that relative Lipschitzness of g is a first-order regularity condition
on g, i.e. g is stable in a relative sense under small perturbations. This agrees with our intuition
that smoothness of a function f is a second-order condition (see e.g. Lemma 6, Part II), as this is
equivalent to first-order regularity of the first derivative of f, i.e. the operator g = Vf. We now
give our first variant of mirror prox, leveraging the relative Lipschitzness assumption.

Theorem 1 (Mirror prox). Let Z C RY be convez, let ¢ : Z — R be conver and of Legendre type,
and let g : Z — R? be A-relatively Lipschitz with respect to @. Consider iterating the update

. 1
2, < argmin, . z {)\ (9(2), z) + Dap(z|zt)} )

1
Zt41 4 argmin, ¢ z {)\ (g(z1), 2) + D¢(2|zt)} , for0<t<T,

12This definition is consistent with our definition of a Lipschitz gradient in Definition 3, Part II.



from zo € Z. Then for any z* € Z with D,(2*]|20) < O,
1 NC)
T Z (9(21), 2t — 2%) < T

0<t<T

Proof. The proof is analogous to the mirror descent analysis in Theorem 2, Part III. By the first-
order optimality conditions on the problems defining z, and z;y1, we have for any u, z* € Z,

(9(z0), 2t — u) < Dy(ullze) — Dy(ull2t) — Dy (2t 21),

> =

(9(21), 201 — 2) < Dy (2*[|21) — Dy (2" |2641) — Dy (2141 1l21),

> =

see Eq. (10), Part III for this derivation in more detail. Combining the first equation in the above
display (with u < z;41) and the second equation, we have upon rearranging that

o(2"[|2t) = Dy (2" |2t 41)

D
5 (0 90 5 = 2n) = Dylavnlaf) = Dy(etlle) P
<D

o ("l|20) = Dg (2" z41),
where the last line used relative Lipschitzness. Summing and multiplying by % yields the claim. [

Remark 2. To motivate the update (21), recall from Section 2, Part III that mirror descent is

a discretization of the ideal proximal point method, which yields a % rate of convergence in T

iterations (Theorem 1, Part III). The prozimal point method repeatedly solves the implicit equation

zey1 < 1(Mg(2t41), 2) + Dy(2]121)

which is not implementable in general because z¢11 is used in its own definition. The updates (21)
are explained in [Nem04], where they are first introduced, as two steps of a fized-point iteration,
where the goal is to converge to a new iterate induced by its own gradient operator. Theorem 1
gives quantitative guarantees on this fixed-point iteration, showing that under relative Lipschitzness,
we can recover the improved % rate of the proximal point method (compared to the T2 rate in
Proposition 1). Because mirror prox requires two operator computations per step, it is sometimes
called an extragradient method. Another well-known extragradient method is the dual extrapo-
lation method of [Nes07], which can be viewed as the lazy version of mirror prox (see Remark 3,
Part III for more discussion on this point, and Section D.2, [CST21] for an alternate exposition,).

Theorem 1 is powerful in that it recovers many state-of-the-art results simultaneously. For example,
consider the matrix game (12). It is simple to check that g(z,y) = (ATy, —Az)is L := V2 ||A||,0x-
Lipschitz in the norm ||-|| used in Corollary 1, over the set Z in (15). Therefore, applying Theorem 1
the same regularizer as in Corollary 1, with the relative Lipschitzness bound in Lemma 7, imme-
diately yields an algorithm for producing z € Z with Gap(z) < € running in time

' Llog(mn)) |

€

o) (nnz(A)

which remains the best deterministic runtime known in the matrix-vector multiplication model
[Nem04, Nes05|. This improves nearly-quadratically over Corollary 1 in the number of iterations,
and is incomparable to our stochastic matrix game solver (with runtime in (19)), which focused on
decreasing the cost per iteration rather than the iteration count. Moreover, combining Lemma 8
and Theorem 1 recovers known results on relatively smooth optimization from [BBT17, LFN18].

We mention another useful property of mirror prox: an extension of it yields linear convergence
rates when the relatively Lipschitz operator g enjoys strong monotonicity in V¢ (Definition 2).
This is in contrast to the setting of mirror descent (where g is simply bounded over a domain,
rather than relatively Lipschitz), where known lower bounds hold in the strongly convex setting,
as established in Remark 1, Part II. In this sense, mirror prox recovers another aspect of the
proximal point method (Theorem 1, Part III) which is unattainable by mirror descent.



Theorem 2 (Strongly monotone mirror prox). Let Z C R? be convez, let ¢ : Z — R be convex
and of Legendre type, and let g : Z — R be A-relatively Lipschitz in ¢ and m-strongly monotone
in V. Consider iterating the update

2z, ¢ argmin_ . z {/1\ (9(20), 2) + D<p(z||zt)} ,
(23)

. 1 m
Zip1 — argmin, . {)\ (g(21), 2) + Dy (2||2t) + )\D@(zﬂzé)} , for0 <t <T,

from zyg € Z. Then if z* solves the variational inequality in g,'3
* m -T *
Dy(erlz) < (1+5)  Dol="l20).
Proof. As in Theorem 1, first-order optimality conditions and nonnegativity of D, imply

1
1 {9(z0) 2 = u) < Dy (ul|ze) = Do (ullzt) — D (2t 20),

1 * * *
X (9(21), 241 — 27) < Dyp(2*|z) — D (2" || 2e41) — Dy (211120
m * *
Y (Dy(2*]12;) = D2 |2641)) -

Rearranging and applying relative Lipschitzness as in (22), we then have

m m N
(9(2), 2 — 2) — XDw(Z*HZé) < Dp("|l20) = Dy (2" [|2041) = Dy (2e1l120) = 5Dy (27| 2641)

m
< Dyl z0) = (14 5 ) Dol [2141):

> =

Because z* solves the VI in g, and g is strongly monotone in Vi, we further derive

1 * m * 1 * * m *
06D, 2 = 27) = D (1) 2 5 (geh) — 9(2"), 2 — ) — TDy(20)
m * m *
> 2V () - V(") 21 — 2 = D, (7 2
m
A

Dy (2"||2;) > 0.
Combining the above two displays yields the desired claim upon recursion, since we have shown
* m -1 *
Dy (2"||z¢41) < (1 + X) Dy(2%]|z), forall 0 <t <T.
O

Remark 3. One downside of mirror prox compared to mirror descent (Proposition 1) is it does
not extend as straightforwardly to stochastic settings, while retaining the % rate. This is because
the dependencies induced by the two-stage updates (21), (23) do not play well with the analysis. In
certain structured settings (see e.g. Section 6, [CST21]), however, it is possible to design “coupled”
stochastic estimators in a way that directly lets us carry out the convergence analyses in Theo-
rems 1, 2, taking into account dependences between iterates. This also gives us another strategy
for handling the independence issue (7). Namely, because z* in Theorem 2 is deterministic (inde-
pendent of the algorithm), and Theorem 2 yields high-accuracy convergence rates, we can typically

directly argue that our iterates approximate a saddle point and bound the duality gap accordingly.

4 Acceleration

We conclude this lecture with an application of Section 3 to the setting of smooth convex opti-
mization, as studied in Sections 3-5 of Part II.'* Throughout the section, let f : R* — R be convex

L3Recall from (9) that this means (g(z*),2* — z) < 0 for all z € Z.
14The acceleration derivation in this section is somewhat nonstandard, but we choose this presentation because
it directly uses previously-developed machinery instead of creating a new analysis, which we found illuminating.
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and L-smooth in [|-]|, let 7 : R? — R be 1-strongly convex in ||-||, and let f be u-relatively strongly
convex in r. We consider solving the optimization problem

min f(x) = min h(z) + pr(z), (24)
zER? zeRd
for a convex function h := f — ur. Notably, the formulation (24) recovers the well-conditioned
optimization setting in Section 4, Part II, because we can take |-[| = |||, and r = 1 ||||§ (see Lemma

5, Part III for a proof of equivalence). Moreover, we make the following simple observations.

Lemma 9. Let f: R? — R be L-smooth in |-|| and p-relatively strongly conver inr : R?* = R, a
convex function. Then h:= f — pr is convex and L-smooth in ||-||,

Proof. The first claim is the definition of relative strong convexity. To see the second, we apply
the equivalent characterization in Lemma 14, Part II, with convexity of r. O

Note that Lemma 4, Part III combined with smoothness of h shows h* is %—strongly convex in
II]l.. Following [CST21], our strategy for solving (24) is to instead consider the equivalent problem

min max F'(z,y) := (y, z) + pr(z) — h*(y). (25)
z€R4 yeR4

We observe that because r and h* are both strongly convex, the minimax theorem of [ET99|
mentioned in Section 1 establishes strong duality for (25). We will apply Theorem 2 with an
appropriate choice of regularizer ¢, to design a linearly-convergent algorithm for (25). Concretely,
following the gradient operator definition in Lemma 1, we define

g(z,y) == (Vo F(2,y), =V, F(2,y)) = (y + pVr(z), —z + Vh*(y)),

o(x,y) = pr(x) + h*(y). (26)

We can relate our choice of g and ¢ in (26) through the following straightforward claims.

Lemma 10. Following the notation (26), g is 1-strongly monotone in V.

Proof. This follows from the observation that bilinear terms in g cancel. For z = (z,y), 2’ = («/, /),

(9(2) = g(2"), 2 = 2') = (uVr(x) — uVr(z'),z — 2"y + (VA" (y) = VA*(y'),y — ¢/)
= (Vp(2) = Vo(2'),z = 2).

Lemma 11. Following the notation (26), g is (1 + \/L/u)-relatively Lipschitz in .

Proof. We begin by expanding, for any z = (2%, 2Y), w = (w*,wY), u = (v*,w¥),

(9(w) = 9(2),w — u) = (PVr (W) — pVr(Z), w* — ) + (VA" (w’) = VA* (), w” — u”)

+ (w — 2w =) + (W= 2w —wY).
By Corollary 3, the first line is at most D, (w||z) + Dy (u|lw). To bound the second line, observe

[w” = 27|, [l = || + [ = 2% [lu” = w”]],

L 1 L 1
S e A L ) PRV CI LR e A TR 5
L X X Yl ~Y X|| X y y
< | £ (WD) + D (w727) + D (w2 + Do ().

The first inequality was Young’s, and the second applied strong convexity of r and h* with Fact
5, Part III. The conclusion follows by using the definition of ¢. O
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Plugging in Lemmas 11 and 10 to Theorem 2 immediately yields an algorithm which converges to
a high-accuracy solution for (24) in O(y/k) iterations for x := %, improving upon Theorem 4 of
Part IT (and matching the leading-order term of the lower bound in Theorem 5, Part II). However,
the reader should be somewhat suspicious, because it is not clear that we can efficiently implement
the mirror prox steps in (23). To implement the steps in the x variable, it is enough to assume
that r admits a proximal oracle in the sense of Eq. (9), Part III, which is the standard setting for
mirror descent (in the Euclidean case, this oracle access can be computed in closed-form). For the
y variable, our updates in (23) require us to solve problems of the form

y' <« argming cga {— (VA*(y) +¢,9') + " (¢)},

for an explicit vector ¢ given by the bilinear component of (26), and a previous iterate y. By Fact
1, Part III, the optimal ¢’ above has the form Vh(c + Vh*(y)). Using this observation, [CST21]
showed that by recursively maintaining y iterates as Vhi(v) for an explicit vector v, we can simply
update v’ < c¢+wv to implicitly implement the required update. Recursively computing the = block
of (26) using this implicit representation shows that O(1) gradient queries to f and r suffice to
implement each step of Theorem 2; for brevity, we defer additional details to Appendix E, [CST21].

We remark that our relative Lipschitzness proof in Lemma 11 crucially used both the “norm-
dependent” characterization in Lemma 7 and the “norm-free” characterization of Lemma 8, which
we believe illustrates the flexibility of the mirror prox framework developed in Section 3.
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Source material

Portions of this lecture are based on reference material in [ET99, Bubl5, Sid23], as well as the
author’s own experience working in the field.
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